Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

I-V and Differential Conduction Characteristics of an AIGaAs/GaAs Lateral Quantum Dot Infrared Photodetector

Identifieur interne : 001A53 ( Main/Repository ); précédent : 001A52; suivant : 001A54

I-V and Differential Conduction Characteristics of an AIGaAs/GaAs Lateral Quantum Dot Infrared Photodetector

Auteurs : RBID : Pascal:13-0015962

Descripteurs français

English descriptors

Abstract

A new infrared detector design, henceforth referred to as a lateral quantum dot infrared photodetector (LQDIP), with the potential for a tunable internal spectral response was investigated. In this design, InAs quantum dots are buried in a GaAs quantum well, which is in turn tunnel-coupled to a second GaAs quantum well. Photoexcited electrons from the quantum dots are expected to tunnel over to the second well, where they are then swept out via a lateral (perpendicular to the growth direction) bias voltage. The lateral photocurrent is in part directed to tunnel into the second quantum well by the depletion field of a narrow pinch-off gate, applied vertically (parallel to the growth direction). Under a proper biasing arrangement, this detector architecture is expected to exhibit the ability to tune to select infrared frequencies as well as operate with reduced dark currents and unity gain in the second well. The LQDIP detector architecture, operating principles and conditions, and preliminary results of I-V, photocurrent, and differential conductance measurements are all discussed.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0015962

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">I-V and Differential Conduction Characteristics of an AIGaAs/GaAs Lateral Quantum Dot Infrared Photodetector</title>
<author>
<name sortKey="Guidry, D H" uniqKey="Guidry D">D. H. Guidry</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>AFRL/RVSS, 3550 Aberdeen Ave SE, Kirtland AFB</s1>
<s2>NM 87117-5776</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Morath, C P" uniqKey="Morath C">C. P. Morath</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>AFRL/RVSS, 3550 Aberdeen Ave SE, Kirtland AFB</s1>
<s2>NM 87117-5776</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cowan, V M" uniqKey="Cowan V">V. M. Cowan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>AFRL/RVSS, 3550 Aberdeen Ave SE, Kirtland AFB</s1>
<s2>NM 87117-5776</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cardimona, D A" uniqKey="Cardimona D">D. A. Cardimona</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>AFRL/RVSS, 3550 Aberdeen Ave SE, Kirtland AFB</s1>
<s2>NM 87117-5776</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0015962</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0015962 INIST</idno>
<idno type="RBID">Pascal:13-0015962</idno>
<idno type="wicri:Area/Main/Corpus">001471</idno>
<idno type="wicri:Area/Main/Repository">001A53</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0361-5235</idno>
<title level="j" type="abbreviated">J. electron. mater.</title>
<title level="j" type="main">Journal of electronic materials</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium Gallium Arsenides Mixed</term>
<term>Aluminium arsenides</term>
<term>Bias voltage</term>
<term>Current gain</term>
<term>Dark current</term>
<term>Excited states</term>
<term>Gallium arsenides</term>
<term>Gallium tellurides</term>
<term>Gates</term>
<term>Growth mechanism</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Infrared detectors</term>
<term>Nanostructured materials</term>
<term>Operating conditions</term>
<term>Operating mode</term>
<term>Photoconductivity</term>
<term>Photocurrents</term>
<term>Quantum dots</term>
<term>Quantum wells</term>
<term>Spectral response</term>
<term>Tunnel effect</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Arséniure de gallium</term>
<term>Composé III-V</term>
<term>Semiconducteur III-V</term>
<term>Point quantique</term>
<term>Nanomatériau</term>
<term>Détecteur IR</term>
<term>Réponse spectrale</term>
<term>Arséniure d'indium</term>
<term>Puits quantique</term>
<term>Effet tunnel</term>
<term>Etat excité</term>
<term>Mécanisme croissance</term>
<term>Tension polarisation</term>
<term>Courant photoélectrique</term>
<term>Tellurure de gallium</term>
<term>Arséniure d'aluminium</term>
<term>Photoconductivité</term>
<term>Electrode commande</term>
<term>Courant obscurité</term>
<term>Gain courant</term>
<term>Condition opératoire</term>
<term>Mode opératoire</term>
<term>Aluminium Gallium Arséniure Mixte</term>
<term>GaAs</term>
<term>InAs</term>
<term>AlGaAs</term>
<term>7363K</term>
<term>8107T</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A new infrared detector design, henceforth referred to as a lateral quantum dot infrared photodetector (LQDIP), with the potential for a tunable internal spectral response was investigated. In this design, InAs quantum dots are buried in a GaAs quantum well, which is in turn tunnel-coupled to a second GaAs quantum well. Photoexcited electrons from the quantum dots are expected to tunnel over to the second well, where they are then swept out via a lateral (perpendicular to the growth direction) bias voltage. The lateral photocurrent is in part directed to tunnel into the second quantum well by the depletion field of a narrow pinch-off gate, applied vertically (parallel to the growth direction). Under a proper biasing arrangement, this detector architecture is expected to exhibit the ability to tune to select infrared frequencies as well as operate with reduced dark currents and unity gain in the second well. The LQDIP detector architecture, operating principles and conditions, and preliminary results of I-V, photocurrent, and differential conductance measurements are all discussed.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0361-5235</s0>
</fA01>
<fA02 i1="01">
<s0>JECMA5</s0>
</fA02>
<fA03 i2="1">
<s0>J. electron. mater.</s0>
</fA03>
<fA05>
<s2>41</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>I-V and Differential Conduction Characteristics of an AIGaAs/GaAs Lateral Quantum Dot Infrared Photodetector</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>2011 U.S. Workshop on the Physics and Chemistry of II-VI Materials</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>GUIDRY (D. H.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MORATH (C. P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>COWAN (V. M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CARDIMONA (D. A.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>SIVANANTHAN (S.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>DHAR (N. K.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>ANTER (Y.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>AFRL/RVSS, 3550 Aberdeen Ave SE, Kirtland AFB</s1>
<s2>NM 87117-5776</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Microphysics Laboratory, University of Illinois at Chicago, 845 W. Taylor St.</s1>
<s2>Chicago, IL 60607</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Defense Advanced Research Projects Agency, 3701 North Fairfax Drive</s1>
<s2>Arlington, VA 22203-1714</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA18 i1="01" i2="1">
<s1>American Physical Society (APS)</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>2679-2685</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>15479</s2>
<s5>354000506838620030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>13 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0015962</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of electronic materials</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A new infrared detector design, henceforth referred to as a lateral quantum dot infrared photodetector (LQDIP), with the potential for a tunable internal spectral response was investigated. In this design, InAs quantum dots are buried in a GaAs quantum well, which is in turn tunnel-coupled to a second GaAs quantum well. Photoexcited electrons from the quantum dots are expected to tunnel over to the second well, where they are then swept out via a lateral (perpendicular to the growth direction) bias voltage. The lateral photocurrent is in part directed to tunnel into the second quantum well by the depletion field of a narrow pinch-off gate, applied vertically (parallel to the growth direction). Under a proper biasing arrangement, this detector architecture is expected to exhibit the ability to tune to select infrared frequencies as well as operate with reduced dark currents and unity gain in the second well. The LQDIP detector architecture, operating principles and conditions, and preliminary results of I-V, photocurrent, and differential conductance measurements are all discussed.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07T</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C63K</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Détecteur IR</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Infrared detectors</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Réponse spectrale</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Spectral response</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Puits quantique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Quantum wells</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Effet tunnel</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Tunnel effect</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Etat excité</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Excited states</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Tension polarisation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Bias voltage</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Voltage polarización</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Courant photoélectrique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Photocurrents</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Tellurure de gallium</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Gallium tellurides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Arséniure d'aluminium</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Aluminium arsenides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Photoconductivité</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Photoconductivity</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Electrode commande</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Gates</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Courant obscurité</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Dark current</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Corriente obscuridad</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Gain courant</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Current gain</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Ganancia corriente</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Condition opératoire</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Operating conditions</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Condición operatoria</s0>
<s5>33</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Mode opératoire</s0>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Operating mode</s0>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Método operatorio</s0>
<s5>34</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Aluminium Gallium Arséniure Mixte</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>35</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Aluminium Gallium Arsenides Mixed</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>35</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Mixto</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>35</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>AlGaAs</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>7363K</s0>
<s4>INC</s4>
<s5>65</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>8107T</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fN21>
<s1>007</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>2011 U.S. Workshop on the Physics and Chemistry of II-VI Materials</s1>
<s2>30</s2>
<s3>Chicago, IL USA</s3>
<s4>2011-10-04</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A53 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001A53 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0015962
   |texte=   I-V and Differential Conduction Characteristics of an AIGaAs/GaAs Lateral Quantum Dot Infrared Photodetector
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024